R&D for selection of refrigerant alternatives has been a hot issue for the air-conditioning industry for quite a few years. Both the HVAC&R industry and the automobile industry have been searching for the best solutions. According to Directive 2006/40/EC of the European Parliament and of the Council of May 17, 2006 relating to emissions from air-conditioning systems in motor vehicles and amending Council Directive 75/156/EEC, hydrofluorocarbons (HFCs) with a global warming potential (GWP) higher than a 150 level are banned from use in car air conditioning systems. Member states are due to implement the directive from January 2008. Therefore, refrigerant selection for automobiles is now the most urgent problem for 2008.

At the end of 2007, the German industry association, VDA, chose carbon dioxide (CO2) as its refrigerant. Germany is the home to Volkswagen, Daimler, and BMW, its decision definitely has a strong impact on other countries.

However, some industry insiders from Germany considered that the time constraints placed on the industry by the EU may hurl the industry into choosing a solution that is not the best for the environment or consumers. Although CO2 has a GWP as low as 1 and the Ozone depletion potential (ODP) is zero, it has some restrictions with respect to thermo-physical properties. Beside, technical issues regarding the use of CO2 in mobile air conditioning remain unresolved by the industry, despite years of development. As a result, it can be assumed that CO2 systems will require more after-sales service and higher warranty costs.

Therefore, CO2 is probably not an ideal refrigerant for ACs. Many experts also consider that a good refrigerant is not necessarily a natural one. That is why, although the German automobile industry has already decided on CO2-based solutions, refrigerant-producers DuPont and Honeywell are still developing and commercializing a new refrigerant with low GWP to replace the HFC-134a in mobile air conditioning systems.

At AHR Expo ’08, DuPont and Honeywell announced that they have jointly come up with a new refrigerant for mobile air conditioning designed to address concerns about the perceived high GWP of HFC-134a. The refrigerant was identified as HFO-1234yf, meaning it is not an HFC. According to DuPont, the refrigerant is a single component and not a blend. HFO-1234yf has a low GWP of 4 to 6. It is very energy efficient, exhibits low toxicity and is comparable to HFC-134a according to early testing. Evaluations so far indicate that HFO-1234yf will be compatible with existing HFC-134a mobile air conditioning system technology, which enables a smooth, cost-effective industry transition. Other attributes of HFO-1234yf include good cooling performance in hot and moderately hot climates, lower operating pressures than CO2 systems, greater safety for consumers and service technicians, potentiality to be used in all cars, compatibility with existing technology, and higher reliability and lower warranty costs.

Honeywell and DuPont recently announced that they have jointly come up with a new refrigerant HFO-1234yf for car air conditioning use. What are the detailed properties of the new refrigerant? Our JARN staff visited to interview Mr. David Diggs, Honeywell’s director.
Top Interview

CO₂ or HFO-1234yf, Which will be the Winner?

The selection of refrigerant alternatives has been a serious issue for the air-conditioning industry for a long time. In September 2007, German industry association has chosen CO₂ as the refrigerant for automobiles. However, some US companies are still developing and commercializing new refrigerants with low GWP to replace the HFC-134a in mobile air conditioning systems. Honeywell and DuPont recently announced that they have jointly come up with a new refrigerant HFO-1234yf. What are the detailed properties of the new refrigerant? Will the appearance of this new refrigerant bring significant influences on Europe’s environmental policy? With all these questions, we visited Mr. David Diggs, global business director for Honeywell’s refrigerants business.

J: What are the test results of HFO-1234yf? Is it said that GWP is 4 and ozone depletion potential (ODP) is 0. Could you give us more information on this? Can this new refrigerant achieve the same efficiency level as HFC-134a does if used in the air conditioning system?

D: HFO-1234yf has zero ODP and a GWP of 4. It is different from HFC-134a and all previous fluorocarbon refrigerants in one key respect: atmospheric lifetime. If HFO-1234yf is released to the atmosphere it is rapidly removed (the atmospheric lifetime is 11 days) and the atmospheric degradation products are the same as for HFC-134a.

Among the most important characteristics for an HFC-134a replacement product is its overall environmental impact. LCPC or Life-Cycle Climate Performance takes into account both direct and indirect environmental impact. It characterizes the overall environmental impact of mobile air conditioning (MAC) systems, including the energy used in production of a chemical, the fuel consumption related to its use, and ultimate disposal of the product. HFO-1234yf has the lowest LCCP compared to R-744 (CO₂) and HFC-134a, regardless of region. These results were presented by the JAMA-JAPIA Consortium at the 2nd European Workshop Mobile Air Conditioning and Auxiliaries Conference in Turin, Italy, last November.

In tests, which included compact and luxury cars, CO₂ performed worse in LCCP across the board. With respect to performance and cooling ability, CO₂ significantly underperformed compared to HFO-1234yf in high ambient temperature conditions.

Samples of HFO-1234yf have been made widely available to OEMs and their suppliers for extensive testing against critical safety, toxicological and environmental criteria. Results of both performance testing and risk assessments have been very favorable, showing very close performance (within 5%) of HFC-134a without the need for any significant changes to the air conditioning system design.

Additionally, based on tests conducted in a variety of climates CO₂ is not nearly as effective at cooling the interior of an automobile as HFO-1234yf. Particularly, in hot climates, in order to reach performance levels close to HFO-1234yf, considerably more engine power is required compared to today’s engines using HFC-134a.

Overall, Honeywell and DuPont’s HFO-1234yf solution is as effective as HFC-134a. It offers comparable performance to HFC-134a in warm and hot climates.

J: When will HFO-1234yf be formally registered? In your view, when will this new refrigerant start mass production? And where will be the initial market of it?

D: We have already begun the registration process in the United States, European Union and Japan. We will base our decision on when to start production of HFO-1234yf based on the needs of the OEM.

HFO-1234yf meets to the European Union’s mobile air conditioning (MAC) directive, new vehicle types introduced in the EU on or after January 1, 2011 must use refrigerants in mobile air conditioning applications with a global warming potential (GWP) below 150. The transition will be completed by 2017.

Honeywell and DuPont will continue to work closely with automotive manufacturers to complete the qualification process for HFO-1234yf, to meet the industry’s goals for a smooth and cost-effective global transition in time for the EU’s 2011 directive.

J: The development of a new refrigerant usually involves the participation of several related companies. Which car air conditioner companies or chiller makers participated in the co-development of this new refrigerant? Are there any Japanese air conditioners manufacturers?

D: Again, the Honeywell-DuPont solution - HFO-1234yf - enables automakers to meet the new EU regulations globally with minimal disruption to current automobile design and manufacturing methodologies. HFO-1234yf is designed to closely match the characteristics of HFC-134a while offering a lower GWP. HFC-410A is a higher pressure refrigerant with different characteristics than HFO-1234yf so it is unlikely that HFO-1234yf could be a direct substitute for HFC-410A.

Honeywell invented and patented HFC-410A, which is used by equipment manufacturers as the refrigerant of choice for replacing HFC-22 in stationary air conditioners and heat pumps.

J: Do you think the appearance of this new refrigerant will bring significant influences on Europe’s environmental policy? For example, do you think the new refrigerant will replace CO₂ as the solution for car air conditioners?

D: Fluorocarbons provided refrigeration in the first automobile air conditioning systems with HFC-134a and their reliability and performance has made them the universal choice for mobile air conditioning ever since.

Automakers are seeking the most environmentally-friendly, cost-effective and compliant refrigerant viable. Our fluorocarbon solution HFO-1234yf meets EU low-GWP requirements, and we believe it is more reliable than a CO₂ solution in addition to offering superior performance in warm and hot climates.

J: Any more information that you’d like to share with our readers, especially any major initiatives for Honeywell refrigerants in Asia markets?

D: Technical issues regarding the use of CO₂ in car air conditioning remain unresolved by the industry, despite years of development, which include system reliability and durability, high temperature components, assembly line and charging issues, refrigerant containment and the high cost of the systems. Therefore, it can be assumed that CO₂ systems will require more after-sales service and higher warranty costs compared to HFO-1234yf.

Also, it is important to note that among the most important characteristics for an HFC-134a replacement product is its overall environmental impact. Other key characteristics are whether the product is safe for consumers and automobile industry employees as well as the ability of the product to effectively cool the interior of a car in all climates, including in China.

Mr. David Diggs, global business director for Honeywell’s refrigerants business